Решение вступительной работы по ФИЗИКЕ в 9 класс ФТШ. 2014 год

1. Хладнокровность насекомых

Если температура тела больше температуры среды (животное теплокровное), то тело будет терять тепло. Мощность теплопотерь пропорциональна площади тела. Значит за заданный промежуток времени количество затраченного на обогрев тепла, а тем самым и количество съеденной («сожженной») для этого пищи, пропорционально площади тела.

При уменьшении линейных размеров тела в N раз площадь падает в N^2 раз, а объем в N^3 раз. Масса тела пропорциональна объему и уменьшается в N^3 раз, а масса пищи, затрачиваемой на обогрев только в N^2 . Слишком маленькое теплокровное животное должно есть слишком много (по отношению к своей общей массе), чтобы обогреться.

Ответ:

Слишком маленькое теплокровное животное должно есть слишком много (по отношению к своей общей массе), чтобы обогреться.

Замечание 1:

В природе существуют очень маленькие птички (колибри) по размерам сравнимые с крупными насекомыми - и они теплокровны. Впрочем, они действительно очень много едят (по отношению к массе своего тела).

Замечание 2:

В решении говорилось о проблеме обогрева. Разумеется, в ситуации жары, когда температура окружающей среды больше температуры тела, у маленьких теплокровных животных, по тем же причинам, будет больше проблем с самоохлаждением.

2. Сказочная дешевизна

A)

Размеры и форма монет не меняются, значит, объем дешевой монеты равен объему дорогой (золотой):

$$V = V_{\text{деш}} = V_{\text{зол}} = \frac{M}{\rho_{\text{зол}}} = \frac{98 \text{ г}}{19.6 \frac{\Gamma}{\text{см}^3}} = 5 \text{ см}^3$$
, где M – масса золотой монеты.

Если дешевая монета перестала тонуть в ртути, значит, её средняя плотность стала не больше плотности ртути:

$$\rho_{\rm деш} \le \rho_{\rm pt}.$$

Тогда её масса

$$m =
ho_{
m деш} \cdot V \le
ho_{
m pr} \cdot V = 13,6 rac{\Gamma}{{
m cm}^3} \cdot 5 {
m \, cm}^3 = 68 {
m \, r}.$$

 $\overline{\text{Убыль}}$ массы $\Delta m = M - m \ge 98 - 68 = 30$ г.

Пусть масса золота в дешевой монете
$$m_{30л}$$
, тогда масса серебра $m_{\text{сер}} = m - m_{30л}$. Объем золота в монете $V_{30л} = \frac{m_{30л}}{\rho_{30л}}$, серебра $V_{\text{сер}} = \frac{m_{\text{сер}}}{\rho_{\text{сер}}}$.
$$V_{30л} + V_{\text{сер}} = V \Leftrightarrow \left[\frac{m_{30л}}{\rho_{30л}} + \frac{m - m_{30л}}{\rho_{\text{сер}}} = V\right] = \frac{M}{\rho_{30л}} \Leftrightarrow \\ \Leftrightarrow m_{30л} + m \frac{\rho_{30л}}{\rho_{\text{сер}}} - m_{30л} \frac{\rho_{30л}}{\rho_{\text{сер}}} = M \Leftrightarrow \\ \Leftrightarrow m \frac{\rho_{30л}}{\rho_{\text{сер}}} - M = m_{30л} \left(\frac{\rho_{30л}}{\rho_{\text{сер}}} - 1\right) \Rightarrow \\ \Rightarrow \frac{m_{30л}}{M} = \frac{\frac{m}{M} \cdot \frac{\rho_{30л}}{\rho_{\text{сер}}} - 1}{\frac{\rho_{30л}}{\rho_{\text{сер}}} - 1} \le \frac{\frac{68}{98} \cdot \frac{19,6}{10,8} - 1}{\frac{19,6}{10,9} - 1} \cong 0,32 = 32\%.$$

Ответ:

Золота в дешевой монете не более 32% от исходной, а так как серебро по условию в серебряном государстве ничего не стоит, то и вся монета стоит не более 32% от чисто золотой.

Можно было бы и прямо из уравнения, обведенного в рамку, найти массу золота и получить $m_{30Л} \cong 31,2$ г, то есть около 32% от массы M = 98 г.

3. Муля, Хрюля и мороженое

A)

Масса мороженого в первом ведерке больше (из него не ел Хрюля), значит, при той же мощности теплоотъёма, оно будет охлаждаться *дольше* от температуры замерзания 0° С до -20° С, следовательно...

Ответ:

...мороженое в первом (полном) ведерке полностью замерзло раньше.

Б)

Пусть масса в полном ведерке M, Хрюля съел массу m, мощность теплоотъёма P. Отданное при охлаждении тепло первым ведерком получено из замерзания половины массы и, затем, охлаждения всей массы до -20° C:

$$Pt_1=Q=rac{M}{2}\cdot\lambda+c_1M(T_{\Pi\Pi}-T_{
m K})$$
, где $T_{
m K}=-20^{\circ}$ С, $T_{\Pi\Pi}=0^{\circ}$ С, t_1 — время охлаждения.

Для второго ведерка вся несъеденная масса M-m сначала охлаждается от 35°C до $T_{\rm пл}=0$ °C, затем замораживается и охлаждается дальше:

$$Pt_2=Q_2=c_2(M-m)(T_{\rm H}-T_{{
m III}})+\lambda(M-m)+c_1(M-m)(T_{{
m III}}-T_{{
m K}})$$
, где $T_{
m H}=+35^{\circ}{
m C}.$

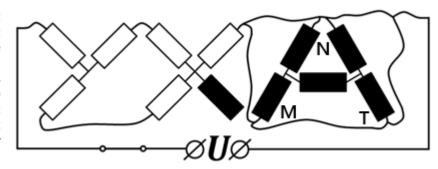
По условию

$$\begin{split} t_1 &= t_2 \ \Rightarrow \ Q_1 = Q_2 \Rightarrow \\ &\Rightarrow M \left(\frac{\lambda}{2} + c_1 (T_{\text{ПЛ}} - T_{\text{K}}) \right) = (M - m) [c_2 (T_{\text{H}} - T_{\text{ПЛ}}) + \lambda + c_1 (T_{\text{ПЛ}} - T_{\text{K}})] \end{split}$$

или

$$\frac{M-m}{M} = \frac{\frac{\lambda}{2} + c_1(T_{\Pi\Pi} - T_{K})}{c_2(T_{H} - T_{\Pi\Pi}) + \lambda + c_1(T_{\Pi\Pi} - T_{K})} = \frac{160000 + 2000 \cdot 20}{4000 \cdot 35 + 320000 + 2000 \cdot 20} = \frac{2}{5}.$$

$$\frac{M-m}{M} = \frac{2}{5} \Rightarrow M = \frac{5}{3}m = \frac{5}{3} \cdot 450 = 750 \text{ r.}$$


Ответ:

В полном ведерке 750 г мороженого.

4. Незнайкина уха.

A)

При подключении вывески правый нижний конец буквы "X" никуда не подключен и светиться не будет; что до буквы "A", то все точки её подключения, фактически, соединены между собой проводами без сопротивления. Весь ток пойдет по ним (не создавая напряжения между крайними точками M, N, T буквы "A") и по самой букве так и не пойдет. В итоге будет светиться лишь надпись "yy".

Ответ:

Будет светиться надпись "УУ".

Б)

Работающая часть вывески эквивалентна такой схеме: участки ABC и ADC параллельны и имеют сопротивление по 2R (см. рис.). Общее сопротивление:

$$R_{06iii} = R + \frac{2R \cdot 2R}{2R + 2R} + R = 3R.$$

Ответ:

Полная мощность вывески:

$$P_{\text{общ}} = \frac{U^2}{R_{\text{общ}}} = \frac{U^2}{3R} = \frac{(300)^2}{150} = 600 \text{ Bt.}$$

5. Изучение цилиндров

A)

Раз цилиндр нагревается во много раз быстрее, чем остывает, теплопотери при нагреве можно не учитывать. Мощность нагрева:

$$P = \frac{U^2}{R},$$

при этом

$$R = \rho \cdot \frac{l}{S'}$$

где ρ – удельное сопротивление, l – длина, S – площадь сечения цилиндра.

Количество тепла, которое необходимо сообщить цилиндру:

$$Pt = Q = cM \cdot \Delta T$$
.

Итак, для первого цилиндра:

$$\boxed{\frac{U^2}{R}t_1 = \frac{U^2S}{\rho l}t_1 = cm\cdot (T_{\Pi\Pi} - T_0)},$$

где $t_1 = 10$ сек.

При увеличении линейных размеров в 3 раза S увеличивается в $3^2 = 9$ раз, а масса (пропорционально объему) в $3^3 = 27$ раз.

Итак, для второго цилиндра получим:

$$\frac{U^2 \cdot 9S}{\rho \cdot 3l} \cdot t_2 = c \cdot 27m \cdot (T_{\text{пл}} - T_0)$$

(т.к. вещество то же, то ρ и ΔT – не изменяются).

Или

$$\frac{U^2S}{\rho l} \cdot t_2 = 9cm \cdot (T_{\Pi\Pi} - T_0).$$

Сравнив выражения в рамках:

$$t_2 = 9t_1 = 90$$
 сек.

Ответ:

Большой цилиндр нагреется до температуры плавления за 90 сек.

Б)

Скорость теплопотерь пропорциональна площади поверхности, то есть для большого цилиндра увеличивается в 9 раз, а полная запасенная теплота (пропорциональна массе, а значит, объему) увеличивается в 27 раз.

Значит, большой цилиндр будет остывать дольше (примерно в $\frac{27}{9} = 3$ раза).

Ответ:

Большой цилиндр будет остывать дольше маленького.